5 Lower Bounds on Circuits via Communication Complexity

نویسنده

  • William Gasarch
چکیده

Notation 3.1 As usual the term circuit means family of circuits, one for each n. All circuits will alternate AND and OR gates. There will be no NOT gates; however, both inputs and their negations are available. The depth of a circuit is the longest path from input to output. The fan-in of a circuit is the max number of inputs to a gate. The size of a circuits is the number of gates. A (d, f, s)-circuit is a circuit of depth d, fan-in f , and size s. Note that f ≤ s so unbounded fanin really means f = s. Note also that s ≤ fd. It is clear what it means for a circuit to compute a function g : {0, 1}n → {0, 1}k.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiparty Communication Complexity and Threshold Circuit Size of sfAC0

We prove an nΩ(1)/4k lower bound on the randomized k-party communication complexity of depth 4 AC0 functions in the number-on-forehead (NOF) model for up to Θ(log n) players. These are the first nontrivial lower bounds for general NOF multiparty communication complexity for any AC0 function for ω(log logn) players. For nonconstant k the bounds are larger than all previous lower bounds for any A...

متن کامل

Lower bounds on threshold and related circuits via communication complexity

Communication-complexity definitions and arguments are used to derive linear (Q(n)) and almost-linear (Q(n/ log n)) lower bounds on the size of circuits implementing certain functions. The techniques utilize only basic features of the gates used and of the functions implemented hence apply to a large class of gates (including unbounded fan-in AND/OR, threshold, symmetric, and generalized symmet...

متن کامل

Multiparty Communication Complexity and Threshold Circuit Size of Ac

We prove an nΩ(1)/4k lower bound on the randomized k-party communicationcomplexity of depth 4 AC0 functions in the number-on-forehead (NOF) model for up to Θ(logn)players. These are the first non-trivial lower bounds for general NOF multiparty communicationcomplexity for any AC0 function for ω(log logn) players. For non-constant k the bounds are largerthan all previous lower bou...

متن کامل

Separating Ac from Depth-2 Majority Circuits∗

We construct a function in AC that cannot be computed by a depth-2 majority circuit of size less than exp(Θ(n1/5)). This solves an open problem due to Krause and Pudlák (1997) and matches Allender’s classic result (1989) that AC can be efficiently simulated by depth-3 majority circuits. To obtain our result, we develop a novel technique for proving lower bounds on communication complexity. This...

متن کامل

Lower Bounds on the Area Complexity of Boolean Circuits

Hromkovif, J., S.A. Loikin, A.I. Rybko, A.A. Sapoienko and N.A. Skalikova, Lower bounds on the area complexity of Boolean circuits, Theoretical Computer Science 97 (1992) 2855300. The layout area of Boolean circuits is considered as a complexity measure of Boolean functions. Introducing the communication complexity of Boolean circuits and proving that this communication complexity squared provi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017